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A: Math. Gen., Vol. 9, No. 2, 1976. Printed in Great Britain. 0 1976 
LW 

f d e r  application of the Martin, Siggia, Rose formalism 

R Phythian 
Department of Physics, University College of Swansea, Singleton Park, Swansea, UK 

Received 16 June 1975, in final form 7 October 1975 

~ b ~ c f .  The functional formalism developed by Martin, Siggia and Rose for classical 
statistical dynamics and related problems is extended to a wider class of systems. These are 
characterized by an equation of motion in which a Gaussian random forcing function 
appears multiplicatively. 

koperator formalism of classical statistical dynamics recently presented by Martin el 
4 9 7 9 ,  to be referred to as the MSR formalism, enables closed functional differential 
equations to be written for a suitable generating functional which contains complete 
$mation about both the correlation and response functions of the system. Such 
qmtions provide a very concise formulation of the problem and lead naturally to a 
mndderation of field theory methods in statistical mechanics. 

An important feature of the MSR formalism is that it enables one to give a similar 
description of certain statistical problems of a more general nature in which a random 
lordngfunction operates. In a previous paper (Phythian 1975, to be referred to as I) a 
simplederivation of the MSR formalism has been given for a system with an equation of 
motion of the form 

Jl,(t) = f n ( t ) + A n ( @ ( t ) ,  t>* 

h e  the quantities @n(t)  are the dynamical variables of the system, A, are given 
mn-nndom functions of @( t) and t, and the f, ( t )  are Gaussian random functions of zero 
mean. It is convenient to regard n as a discrete index but there is no difficulty in 
FKralidng to a continuous variable. An example of such a system which is of great 

is a fluid in turbulent motion, the system being maintained in a statistically 
statioW state by random stirring forces. 

NfiOugh closed-form solutions of some functional differential equations can be 
Obtained in the form of functional integrals, little progress has been made in the 

of these and one must resort to more indirect methods. Perhaps the most 
procedure so far developed involves the generation of renor- 

in the way described, for example, by Martin et al, and below we shall 
Pt a rather simpler version of this procedure. It is possible to obtain such renor- 

series bY more direct methods but the analysis is very tedious, involving the 
‘.*gemene and partial re-summation of divergent perturbation series with the 
%Uent toPological and combinatorial problems. Because of such complexities the 
fPrtdenvationsofrenormalized series for the turbulence problem were in fact incorrect 
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270 R Phyrhian 

and a full correct treatment was not published until the paper of Martin etnl more& 
ten yeus later. The correct series had however been previously obtained by & 
in unpublished work using the direct approach. The simplest non-trivial truncation of 
the renormalized series leads to what has become known in turbulence theory as 
direct interaction approximation which has received some experimental suppon at 
moderate Reynolds numbers. Higher-order truncations lead to approximations wu 
are very difficult to evaluate but some work has been done on the application of these 
higher approximations to simpler problems such as an idealized convection problem 
(Kraichnan 1964) and the randomly forced damped anharmonic oscillator (Mortonaod 
finsin 1970). This work seems to indicate that the higher approximations give better 
agreement with the exact results. The same is not apparently true for the turbulence 
problem itself but this may be due to the unsuitability of a formulation of the problemh 
Eulerian form. 

In addition to providing a simple derivation of renormalized series, the t&j~ 
formalism leads naturally to the consideration of other methods first developed for 
quantum systems. One such method is the variational approach, a preliminary invati- 
gation of which has been carried out recently by Rose (1975). Other possibilitiesarethe 
Edwards expansion procedure and the renormalization group (for references see (I)), 

Although it is possible to describe many physical situations by an equation like the 
one above, there are other cases in which a more general equation is called for. The 
equation of motion we shall consider here is 

i h  

where a summation over repeated indices is implied, rmn and An are non-random 
functions of $(t )  and f, and fn(f), gn(t) are independent Gaussian random functionsof 
zero mean with correlation functions given by 

The initial conditions are also random and are statistically independent of bothfandg. 
We shall first mention briefly some probiems which can be so described. Perhapsthe 

simplest of these arises when a passive scalar field +(x, t )  is advected by a fluid in 
turbulent motion, the velocity field of which U(X, t )  can be approximated by a Gaussian 
random field. The equation of motion is 

where s(x, t )  is a source function which may be non-random or Gaussian, and v is,the 
molecular diffusivity. By expanding in terms of a complete set of spatial funcflons 
the equation is transformed into (1) with r and A linear functions. A closely related 
problem is that of the motion of non-interacting particles in a random force field!(% ‘A 
the particle density in phase space +(x, U, t )  satisfymg the equation 
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ge~nding quantum mechanical situation, of interest in the theory of amor- 
Mmaterials, is described by the Schiodinger equation 

rfae ~r(x) is a Gaussian random potential. 
g!&&oduction of some form of self-interaction leads to the presence of non-linear 

be equation of motion. For example the concentration field $(x, t) of a 
undergoing an irreversible, isothermal, second-order reaction and being 

e m u s l y  advected by a Gaussian velocity field satisfies the equation 

wcisaconstant which determines the reaction rate. Similarly the behaviour of two 
@A, B undergoing a second-order reaction is given by 

Itisof interest to note that the turbulence problem may also be described by an 
uption of the form (1). If we define 

Jib, U, t) = S(u - V(X, 0 )  
&re Vis the fluid velocity field, then by using the Navier-Stokes equation satisfied by 
Vilean be shown that $ satisfies the equation 

=I dx’ du‘ 1 dx” du” B(x,  U ;  x’, U’; x”, u”)$(x‘, U’, t)$(x”, U”, t). 

bf is the Gaussian stirring force and B is given by 

s(t U; r’, 0‘; X”, 1)”) 

+(a similar term with x’, U’ and x”, U” interchanged) 

r6ere is the viscosity. This equation has an advantage over the Navier-Stokes 
won in that the non-linear term arises entirely from the true forces (viscous and 
me) acting in the fluid; however this is achieved at the cost of an increase in the 
*Of independent variables. Use of this representation of turbulence has been 
bto simple closures of the corresponding hierarchy of equations for the correla- 
‘foncfions Of $ when f is zero (Lundgren 1972). Such approximations involve no 
-htion of the response of the system to a perturbing force and are presumably 
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open to the Same criticisms as the quasi-normal approximation. It Will be apparentlab 
that such a renormalization is more complicated in this representation since it reqUins 
the introduction of renormalized vertices. These last examples are all &&bed by 
equations which can be transformed into (1) by expanding 4 in terms of a suitaMe 
complete set of functions. In each case r is linear and A quadratic in +. 

It is natural to enquire whether the MSR formalism can accommodate these 
general problems, and we shall show that this is indeed the case. One is therefore& 
to derive renormalized series quite simply and also to apply the other me the  
mentioned above to a much wider range of systems. We shall here content owlves 
with a derivation of the renormalized series. These series do not seem to have appeared 
before in the literature although the direct interaction approximation, which fouowsas 
before from the simplest non-trivial truncation of the series, has been applied to 
problem of diffusion in a random velocity field (Kraichnan 1970) where it is found to 
give good agreement with computer simulations. In this case too it is pres-! 
possible to obtain higher terms of the series by the direct method. The more general 
case in which A is non-linear would be very difficult to deal with by the direct method 
because of the presence of two stochastic non-linear terms in the equations of motion. 

2. Derivation of the functional formalism 

The derivation closely follows the treatment given in I and will be described only briefiy. 
The initial values of t,bn(f) at t = 0 are denoted by 6,,, and are specified by a probability 
density ~ ( 4 ) .  We consider functions of 9, to be denoted by Greek capital letters @,'#, 
etc which form a real Hilbert space with a scalar product given by 

w, @I = d4d6,)W6,)@(4). 

By replacing 6, by $(t)  in such a function @(6,) we get a new time-dependent functiond 
6, denoted by (Dt(6 , ) .  This can be regarded as arising from Ca(6,) by the action of ahear 
evolution operator E( t )  so that we have 

WW#4 = W6,) = @(W)). 

B(t)  = E ( t ) z ( t )  

Differentiating with respect to t and using the equations of motion (1) we obtain 

With E(0) = 1, where 9 ( t )  is given by 
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that A,(r) is an operator which simply corresponds to multiplication by $,,(r) and ** &-adjoint, it Will in future be denoted by $,,(t). The operator B,,(t) satisfies kdearlY 
$ceqution of motion 

bkmre convenient to consider the adjoint operator &(f)  of B,(t) which satisfies the 
et ion 

B,(t) = - g i ( W l m , n ( $ ( f ) ,  t ) B m ( t ) - L , n ( $ ( t ) ,  t )Bm( t ) -  

$,(t) = - t j m ( r ) g i ( f ) r ~ ~ n ( ~ ( ~ ) ,  t )  - 4 m  (t)R,, ($(t), t). 

we now evaluate the functional derivatives of these operators with respect to the 
f and g. This may be achieved by first-evaluating the derivatives of E( t ) .  

w&gXn(r, t’) for SE(f)lSf,(f’) we obtain from the equation of motion for E(t )  
a a 
-X, ( f ,  t ’ )=Xn(f ,  t’)9(t)+6(t--t’)E(t’)-. 
at W n  

Hew 

mithecausal solution for X,(t, t’) is 

e( f - t’)B, ( t ’)E( r )  . 
snnilarly we have 

hgthese results and the definition of &,(t) we finally obtain 

be for functional derivatives in terms of causal commutators play an 
Qntiahk in the derivation of the functional formalism since they allow one tqwrite 
“Wnsefunctions in terms of time-ordered products of the operators $, $. For 
QPle we have 

:@Ois unit function, T the time-ordering operator, the angular brackets denote 
e*mhon value over the random functions f and g, and 8 includes the additional 
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average over initial data. The correlation functions can be written in the Same no 
for example 

tahon, 

ZS($~ (t)$;n (t’)} = ((% TI $n ( t ) $ m  ( 0 P O ) ) -  
Such expectation values can be expressed in terms of the generating functional 

me functional differential equations for Z are obtained as in (1) by using the equations 
of motion for the operators $, 6 together with Novikov’s theorem and the exprmiom 
(2) for functional derivatives. We find 

The equations may easily be rewritten in coordinate representation. For example 
for the first problem described we have 

sz dt‘ Q(x, t ;  x’, t’)- 
6Q(X‘, t‘) 

a s a sz (4) --_- 6 
ST(X’, t+ )  ax;, s ~ x ’ ,  t ’ )  ax, @(x, t )  

where 

(dx, t)S(X’, t’)) = a x ,  c ;  XI, t’) 

( V A X ,  r)u,(x’, t‘)) = R,,(x, t ;  X’, t’). 

It is seen that when the correlation €unctions Q and R contain delta functionsin* 
time differences, one may write down equivalent equations of motion for the OFratoa 
4, $ in which the random functions f, g do not appear. This is a generalization Of 
observation made by Martin et al. 
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Lm&m of renormalized expansions 

kMtioned earlier the functional differential equations provide the simplest deriva- 
br of &e renormalized expansions for correlation and response functions. To 
)Stratethis point let us consider first the simple case of the statistically stationary state 
&fram the equation 

dk~~urce term s identically zero. Although the stationary state in the absence of 
parcesisclearly one in which 4 is zero so that all correlation functions are zero, the e functions are non-zero. For example the quantity G(x, t ;  x', t') = 
~r;t)/~s(x', r') satisfies the equation 

&hacase of interest since for U = 0 it corresponds to the motion of marked particles 
atnrbdent flow. The expectation value of G(x, I ;  x', t') gives,the probability that a 
@e which was at x' at time t' will be found at x at time t. 

Thecorresponding functional differential equations are given by (4) with Q zero. If 
Rinkgrate the first of these forward in time from t = 0, using the fact that the initial 
mditions are eventually forgotten as the stationary state is approached, and integrate 
Lmnd backward in time from t = CO using the fact that 6Z/8q(x, t )  + 0 as t + cn, 
he the  corresponding time-ordered operator product has a 6 on the left, we can 
mite the equations in the form 

$ W e  have used the usual shorthand notation in which 1 stands for xl, tl and 
%tion over repeated variables is implied, Go(l, 2) is the Green function 

X - r4 -) S ( t ,  - t3 -) +(similar term with 3 and 4 interchanged). I 
ltisdearthat C has the symmetry property 

C(1,2,3,4) = C(2,1,3,4) = C(1,2,4,3) = C(2,1,4,3). 
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‘spin’ variable U which can have only the two values *I, and define 
Followhg Martin eta1 we now further simplify the equations by intro&cingan em 

{(I, +) = m ,  
%o(1, +; 2, -)= Go(192) 

%o(l, -; 2, +) = Go(2, 1) 

K(1, -; 2, -; 3, +; 4, +)=$C(1,2,3,4) 

l ( L  -1 = d1) 

with K symmetric with respect to all permutations of the variables including spin, i.e. 

K(1, -; 2, -; 3, +; 4, +) = K(3, +; 2, -; 1, -; 4, +) =etc. 

We shall henceforth absorb the spin variables so that 1 now stands for xI, I,, 0’. 
equation finally takes the form 

Writing Z = exp W we get the equation for W 

Since we are dealing with a situation in which the mean value of $ is zero it is clear that 
W contains no term linear in f: The perturbation series for W is obtained by WritiOg 
down a solution as a ‘power series’ in K. The renormalized expansion is obtained by 
considering the equation 

and Xn, Mn have the same symmetry as go and K. It is apparent that for * = ’ 
equation reduces to the one to be solved, while for A = 0 it reduces to 
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be solution 

w,=;5(1)41,2)5(2). 

W0+AWl+A2W2+. . . . 
we seek a solution of (6) as a power series in A, 

%kmof the series are most convenientlyrepresented in diagram form as follows: 
ql,2)js represented by a line joining the points 1, 2, ’-’ 
@)byasmall black circle at the point 1, 0 

1 4  

We can therefore write 

+; +$ ++ etc. 

W 
the condition that the only terms in the series which are quadratic in 

In WO and the only quartic terms are those in W,. There are thus no 
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contributions to (8' W/S4'2)o and (S4 W/S6)o from higher-order terms. "t, 
tions determine the quantities 2,, M, uniquely in terms Of % and M. We obtain 

>c( = -3 r'p.< + 
+ 

+ = 1 2 * + 9  -8- 

Figure 2. 

It should be borne in mind that the present notation is a highly condensed one so thatM 
actually represents three different sorts of vertex in the more usual notation (fourif 
sources were present). If these expressions are now substituted into (7) we obtain 
desired renormalized series. The direct interaction approximation is obtaind b 
neglecting all terms except 2, in these equations, as may easily be verified. 

The generalization to the case when there is also a quadratic term in the equatioaof 
motion is not difficult. Using the same notation, the equation for W, the logarithmofthe 
generating functional, is 

+ %0(1,2)K(2,3,4,5) 

6W s2w 6 W  sw sw + 3- 

In where the exact form of %,,, J, K depends on -the particular problem considered. 
general the mean value of the field will be non-zero so that w contains a term 

equivalent to using dynamical variables of zero mean. We therefore write 
It is convenient to work in terms of a functional which contains no linear term, W h d  is 

W = P ( l ) l ( l ) +  w 
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W satisfies the equation ILP 

i3W S ’ W  + 3- S 3  w 
+ 2)K(27 3y 4, 5&5(3) SJ(4) S5(5) S5(3) X(4) X(5) 

,+&,,y,jarerelated to %o, J, K , @  andthe functions (8’ W/Sc2)0and (S3W/8J3)0 by 
@OB which we do not give here. 

’he renormalized expansion is obtained from the equation 

1 the equation reduces to the one of interest, and for h = p = 0 it reduces to 
‘wh With solution 

woo = ”, 2)[(2). 
Fi 
-es 

the solution about Woo as a double power series and then determine the 
zn,, y,, X,, from the requirement that terms linear in 5 vanish while 
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tern quadratic, cubic, and quartic in 5 occur only in the lowest possible orders 
expansion parameters A, p. The renormalized series are then found as before andwe 
obtain 

+9 x + . . .  

I= -o( -3  -e+6 

-4 [A + e t c  ] + . .  

Fw 3. 
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